Índice:
- Etapa 1: Hardware necessário:
- Etapa 2: Conexão de Hardware:
- Etapa 3: Código para medição de temperatura e umidade:
- Etapa 4: Aplicativos:
Vídeo: Medição de temperatura e umidade usando HDC1000 e Arduino Nano: 4 etapas
2024 Autor: John Day | [email protected]. Última modificação: 2024-01-30 11:36
O HDC1000 é um sensor de umidade digital com sensor de temperatura integrado que oferece excelente precisão de medição em potência muito baixa. O dispositivo mede a umidade com base em um novo sensor capacitivo. Os sensores de umidade e temperatura são calibrados de fábrica. É funcional dentro da faixa de temperatura total de -40 ° C a + 125 ° C.
Neste tutorial, a interface do módulo sensor HDC1000 com o arduino nano foi ilustrada. Para ler os valores de temperatura e umidade, usamos o arduino com um adaptador I2c. Este adaptador I2C torna a conexão ao módulo do sensor mais fácil e confiável.
Etapa 1: Hardware necessário:
Os materiais de que precisamos para cumprir nosso objetivo incluem os seguintes componentes de hardware:
1. HDC1000
2. Arduino Nano
3. Cabo I2C
4. Escudo I2C para Arduino Nano
Etapa 2: Conexão de Hardware:
A seção de conexão de hardware explica basicamente as conexões de fiação necessárias entre o sensor e o arduino nano. Garantir as conexões corretas é a necessidade básica ao trabalhar em qualquer sistema para a saída desejada. Portanto, as conexões necessárias são as seguintes:
O HDC1000 funcionará em I2C. Aqui está o diagrama de fiação de exemplo, demonstrando como conectar cada interface do sensor.
Fora da caixa, a placa é configurada para uma interface I2C, como tal, recomendamos usar esta conexão se você for agnóstico.
Você só precisa de quatro fios! São necessárias apenas quatro conexões dos pinos Vcc, Gnd, SCL e SDA e estes são conectados com a ajuda do cabo I2C.
Essas conexões são demonstradas nas fotos acima.
Etapa 3: Código para medição de temperatura e umidade:
Vamos começar com o código do Arduino agora.
Ao usar o módulo sensor com o arduino, incluímos a biblioteca Wire.h. A biblioteca "Wire" contém as funções que facilitam a comunicação i2c entre o sensor e a placa arduino.
Todo o código do arduino é fornecido abaixo para a conveniência do usuário:
#incluir
// O endereço I2C HDC1000 é 0x40 (64)
#define Addr 0x40
void setup ()
{
// Inicializar a comunicação I2C como MASTER
Wire.begin ();
// Inicialize a comunicação serial, defina a taxa de transmissão = 9600
Serial.begin (9600);
// Inicia a comunicação I2C
Wire.beginTransmission (Addr);
// Selecionar registro de configuração
Wire.write (0x02);
// Temperatura, umidade habilitada, resolução = 14 bits, aquecedor ligado
Wire.write (0x30);
// Pare a transmissão I2C
Wire.endTransmission ();
atraso (300);
}
void loop ()
{
dados internos não assinados [2];
// Inicia a comunicação I2C
Wire.beginTransmission (Addr);
// Enviar comando de medição de temperatura
Wire.write (0x00);
// Pare a transmissão I2C
Wire.endTransmission ();
atraso (500);
// Solicita 2 bytes de dados
Wire.requestFrom (Addr, 2);
// Lê 2 bytes de dados
// temp msb, temp lsb
if (Wire.available () == 2)
{
dados [0] = Wire.read ();
dados [1] = Wire.read ();
}
// Converta os dados
int temp = (dados [0] * 256) + dados [1];
float cTemp = (temp / 65536,0) * 165,0 - 40;
float fTemp = cTemp * 1,8 + 32;
// Inicia a comunicação I2C
Wire.beginTransmission (Addr);
// Enviar comando de medição de umidade
Wire.write (0x01);
// Pare a transmissão I2C
Wire.endTransmission ();
atraso (500);
// Solicita 2 bytes de dados
Wire.requestFrom (Addr, 2);
// Lê 2 bytes de dados
// umidade msb, umidade lsb
if (Wire.available () == 2)
{
dados [0] = Wire.read ();
dados [1] = Wire.read ();
}
// Converta os dados
umidade flutuante = (dados [0] * 256) + dados [1];
umidade = (umidade / 65536,0) * 100,0;
// Dados de saída para monitor serial
Serial.print ("Umidade relativa:");
Serial.print (umidade);
Serial.println ("% RH");
Serial.print ("Temperatura em Celsius:");
Serial.print (cTemp);
Serial.println ("C");
Serial.print ("Temperatura em Fahrenheit:");
Serial.print (fTemp);
Serial.println ("F");
atraso (500);
}
Na biblioteca de fios, Wire.write () e Wire.read () são usados para escrever os comandos e ler a saída do sensor.
Serial.print () e Serial.println () são usados para exibir a saída do sensor no monitor serial do IDE do Arduino.
A saída do sensor é mostrada na imagem acima.
Etapa 4: Aplicativos:
HDC1000 pode ser empregado em aquecimento, ventilação e ar condicionado (HVAC), termostatos inteligentes e monitores de ambiente. Este sensor também encontra sua aplicação em impressoras, medidores portáteis, dispositivos médicos, transporte de carga, bem como desembaçamento de pára-brisa automotivo.
Recomendado:
Medição de umidade e temperatura usando HIH6130 e Arduino Nano: 4 etapas
Medição de umidade e temperatura usando HIH6130 e Arduino Nano: HIH6130 é um sensor de umidade e temperatura com saída digital. Esses sensores fornecem um nível de precisão de ± 4% UR. Com estabilidade de longo prazo líder do setor, I2C digital com compensação de temperatura real, confiabilidade líder do setor, eficiência energética
Medição de umidade e temperatura usando HTS221 e Arduino Nano: 4 etapas
Medição de umidade e temperatura usando HTS221 e Arduino Nano: HTS221 é um sensor digital capacitivo ultracompacto para umidade relativa e temperatura. Inclui um elemento de detecção e um circuito integrado específico de aplicação de sinal misto (ASIC) para fornecer as informações de medição por meio do serial digital
Medição de umidade e temperatura usando HTS221 e Raspberry Pi: 4 etapas
Medição de umidade e temperatura usando HTS221 e Raspberry Pi: HTS221 é um sensor digital capacitivo ultracompacto para umidade relativa e temperatura. Inclui um elemento de detecção e um circuito integrado específico de aplicação de sinal misto (ASIC) para fornecer as informações de medição por meio do serial digital
Medição de temperatura e umidade usando HDC1000 e partícula de fóton: 4 etapas
Medição de temperatura e umidade usando HDC1000 e partícula de fóton: O HDC1000 é um sensor de umidade digital com sensor de temperatura integrado que fornece excelente precisão de medição em potência muito baixa. O dispositivo mede a umidade com base em um novo sensor capacitivo. Os sensores de umidade e temperatura são fac
Medição de temperatura e umidade usando HDC1000 e Raspberry Pi: 4 etapas
Medição de temperatura e umidade usando HDC1000 e Raspberry Pi: O HDC1000 é um sensor de umidade digital com sensor de temperatura integrado que fornece excelente precisão de medição em energia muito baixa. O dispositivo mede a umidade com base em um novo sensor capacitivo. Os sensores de umidade e temperatura são fac