Medição de temperatura usando TMP112 e Arduino Nano: 4 etapas
Medição de temperatura usando TMP112 e Arduino Nano: 4 etapas
Anonim
Image
Image

TMP112 Módulo I2C MINI do sensor digital de temperatura de alta precisão e baixa potência. O TMP112 é ideal para medições prolongadas de temperatura. Este dispositivo oferece uma precisão de ± 0,5 ° C sem a necessidade de calibração ou condicionamento de sinal de componente externo.

Neste tutorial, a interface do módulo sensor TMP112 com o arduino nano foi ilustrada. Para ler os valores de temperatura, usamos o arduino com um adaptador I2c. Este adaptador I2C torna a conexão ao módulo do sensor mais fácil e confiável.

Etapa 1: Hardware necessário:

Hardware necessário
Hardware necessário
Hardware necessário
Hardware necessário
Hardware necessário
Hardware necessário

Os materiais de que precisamos para cumprir nosso objetivo incluem os seguintes componentes de hardware:

1. TMP112

2. Arduino Nano

3. Cabo I2C

4. Escudo I2C para Arduino Nano

Etapa 2: Conexão de Hardware:

Conexão de hardware
Conexão de hardware
Conexão de hardware
Conexão de hardware

A seção de conexão de hardware explica basicamente as conexões de fiação necessárias entre o sensor e o arduino nano. Garantir as conexões corretas é a necessidade básica ao trabalhar em qualquer sistema para a saída desejada. Portanto, as conexões necessárias são as seguintes:

O TMP112 funcionará em I2C. Aqui está o diagrama de fiação de exemplo, demonstrando como conectar cada interface do sensor.

Fora da caixa, a placa é configurada para uma interface I2C, como tal, recomendamos usar esta conexão se você for agnóstico. Você só precisa de quatro fios!

São necessárias apenas quatro conexões dos pinos Vcc, Gnd, SCL e SDA e estes são conectados com a ajuda do cabo I2C.

Essas conexões são demonstradas nas fotos acima.

Etapa 3: Código para medir a temperatura:

Código para medir a temperatura
Código para medir a temperatura

Vamos começar com o código do Arduino agora.

Ao usar o módulo sensor com o Arduino, incluímos a biblioteca Wire.h. A biblioteca "Wire" contém as funções que facilitam a comunicação i2c entre o sensor e a placa Arduino.

Todo o código do Arduino é fornecido abaixo para a conveniência do usuário:

#incluir

// O endereço I2C TMP112 é 0x48 (72)

#define Addr 0x48

void setup ()

{

// Inicializar a comunicação I2C como MASTER

Wire.begin ();

// Inicialize a comunicação serial, defina a taxa de transmissão = 9600

Serial.begin (9600);

// Iniciar a transmissão I2C

Wire.beginTransmission (Addr);

// Selecionar registro de configuração

Wire.write (0x01);

// Conversão contínua, modo comparador, resolução de 12 bits

Wire.write (0x60);

Wire.write (0xA0);

// Pare a transmissão I2C

Wire.endTransmission ();

atraso (300);

}

void loop ()

{

dados não assinados [2];

// Iniciar a transmissão I2C

Wire.beginTransmission (Addr);

// Selecione o registro de dados

Wire.write (0x00);

// Pare a transmissão I2C

Wire.endTransmission ();

atraso (300);

// Solicita 2 bytes de dados

Wire.requestFrom (Addr, 2);

// Lê 2 bytes de dados

// temp msb, temp lsb

if (Wire.available () == 2)

{

dados [0] = Wire.read ();

dados [1] = Wire.read ();

}

// Converta os dados para 12 bits

int temp = ((dados [0] * 256) + dados [1]) / 16;

if (temp> 2048)

{

temp - = 4096;

}

float cTemp = temp * 0,0625;

float fTemp = cTemp * 1,8 + 32;

// Dados de saída para monitor serial

Serial.print ("Temperatura em Celsius:");

Serial.print (cTemp);

Serial.println ("C");

Serial.print ("Temperatura em Farhenheit:");

Serial.print (fTemp);

Serial.println ("F");

atraso (500);

}

Na biblioteca de fios, Wire.write () e Wire.read () são usados para escrever os comandos e ler a saída do sensor.

Serial.print () e Serial.println () são usados para exibir a saída do sensor no monitor serial do IDE do Arduino.

A saída do sensor é mostrada na imagem acima.

Etapa 4: Aplicativos:

Formulários
Formulários

Várias aplicações que incorporam o sensor de temperatura digital de baixa potência e alta precisão TMP112 incluem monitoramento de temperatura da fonte de alimentação, proteção térmica periférica de computador, gerenciamento de bateria, bem como máquinas de escritório.