Índice:
2025 Autor: John Day | [email protected]. Última modificação: 2025-01-23 15:03
MCP9803 é um sensor de temperatura de alta precisão de 2 fios. Eles são incorporados a registros programáveis pelo usuário que facilitam as aplicações de detecção de temperatura. Este sensor é adequado para sistemas altamente sofisticados de monitoramento de temperatura em várias zonas.
Neste tutorial, a interface do módulo sensor MCP9803 com o fóton de partícula foi ilustrada. Para ler os valores de temperatura, usamos partículas com um adaptador I2c. Este adaptador I2C torna a conexão ao módulo do sensor mais fácil e confiável.
Etapa 1: Hardware necessário:
Os materiais de que precisamos para cumprir nosso objetivo incluem os seguintes componentes de hardware:
1. MCP9803
2. Partícula de fóton
3. Cabo I2C
4. Escudo I2C para partícula de fóton
Etapa 2: Conexão de Hardware:
A seção de conexão de hardware explica basicamente as conexões de fiação necessárias entre o sensor e o fóton da partícula. Garantir as conexões corretas é a necessidade básica ao trabalhar em qualquer sistema para a saída desejada. Portanto, as conexões necessárias são as seguintes:
O MCP9803 funcionará em I2C. Aqui está o diagrama de fiação de exemplo, demonstrando como conectar cada interface do sensor.
Fora da caixa, a placa é configurada para uma interface I2C, como tal, recomendamos usar esta conexão se você for agnóstico.
Você só precisa de quatro fios! São necessárias apenas quatro conexões dos pinos Vcc, Gnd, SCL e SDA e estes são conectados com a ajuda do cabo I2C.
Essas conexões são demonstradas nas fotos acima.
Etapa 3: Código para medição de temperatura:
Vamos começar com o código da partícula agora.
Ao usar o módulo sensor com a partícula, incluímos a biblioteca application.h e spark_wiring_i2c.h. A biblioteca "application.h" e spark_wiring_i2c.h contém as funções que facilitam a comunicação i2c entre o sensor e a partícula.
Todo o código da partícula é fornecido abaixo para a conveniência do usuário:
#incluir
#incluir
// O endereço MCP9803 I2C é 0x48 (72)
#define Addr 0x48
float cTemp = 0, fTemp = 0;
void setup ()
{
// Definir variável
Particle.variable ("i2cdevice", "MCP9803");
Particle.variable ("cTemp", cTemp);
// Inicializar a comunicação I2C como MASTER
Wire.begin ();
// Inicialize a comunicação serial, defina a taxa de transmissão = 9600
Serial.begin (9600);
// Iniciar a transmissão I2C
Wire.beginTransmission (Addr);
// Selecionar registro de configuração
Wire.write (0x01);
// Modo de conversão contínua, padrão de inicialização
Wire.write (0x60);
// Pare a transmissão I2C
Wire.endTransmission ();
atraso (300);
}
void loop ()
{
dados internos não assinados [2];
// Inicia a comunicação I2C
Wire.beginTransmission (Addr);
// Selecione o registro de dados
Wire.write (0x00);
// Pare a transmissão I2C
Wire.endTransmission ();
// Solicita 2 bytes de dados
Wire.requestFrom (Addr, 2);
// Lê 2 bytes de dados
// temp msb, temp lsb
if (Wire.available () == 2)
{
dados [0] = Wire.read ();
dados [1] = Wire.read ();
}
// Converta os dados para 12 bits
int temp = ((dados [0] * 256) + dados [1]) / 16,0;
if (temp> 2047)
{
temp - = 4096;
}
cTemp = temp * 0,0625;
fTemp = cTemp * 1,8 + 32;
// Dados de saída para monitor serial
Particle.publish ("Temperatura em Celsius:", String (cTemp));
Particle.publish ("Temperatura em Fahrenheit:", String (fTemp));
atraso (500);
}
A função Particle.variable () cria as variáveis para armazenar a saída do sensor e a função Particle.publish () exibe a saída no painel do site.
A saída do sensor é mostrada na imagem acima para sua referência.
Etapa 4: Aplicativos:
MCP9803 pode ser empregado em uma ampla arena de dispositivos que incluem computador pessoal e periféricos, unidades de disco rígido, vários sistemas de entretenimento, sistemas de escritório e sistemas de comunicação de dados. Este sensor pode ser incorporado em vários sistemas sofisticados.
Recomendado:
Medição de aceleração usando H3LIS331DL e fóton de partículas: 4 etapas
Medição de Aceleração Usando H3LIS331DL e Particle Photon: H3LIS331DL, é um acelerômetro linear de 3 eixos de baixa potência e alto desempenho pertencente à família “nano”, com interface serial digital I²C. H3LIS331DL tem escalas completas selecionáveis pelo usuário de ± 100g / ± 200g / ± 400g e é capaz de medir acelerações w
Medição de temperatura usando STS21 e fóton de partículas: 4 etapas
Medição de temperatura usando STS21 e fóton de partículas: o sensor digital de temperatura STS21 oferece desempenho superior e uma pegada com economia de espaço. Ele fornece sinais calibrados e linearizados em formato digital I2C. A fabricação deste sensor é baseada na tecnologia CMOSens, que atribui ao superior
Medição de temperatura usando TMP112 e fóton de partículas: 4 etapas
Medição de temperatura usando o TMP112 e o fóton de partículas: TMP112 Módulo I2C MINI de alta precisão e baixa potência do sensor digital de temperatura. O TMP112 é ideal para medições prolongadas de temperatura. Este dispositivo oferece uma precisão de ± 0,5 ° C sem a necessidade de calibração ou condicionamento de sinal de componente externo
Medição de umidade e temperatura usando HIH6130 e fóton de partículas: 4 etapas
Medição de umidade e temperatura usando o HIH6130 e o fóton de partículas: HIH6130 é um sensor de umidade e temperatura com saída digital. Esses sensores fornecem um nível de precisão de ± 4% UR. Com estabilidade de longo prazo líder do setor, I2C digital com compensação de temperatura real, confiabilidade líder do setor, eficiência energética
Medição de temperatura usando AD7416ARZ e fóton de partículas: 4 etapas
Medição de temperatura usando AD7416ARZ e partícula fotônica: AD7416ARZ é um sensor de temperatura de 10 bits com quatro conversores analógico para digital de canal único e um sensor de temperatura integrado incorporado. O sensor de temperatura nas peças pode ser acessado por meio de canais de multiplexador. Esta temperatura de alta precisão